Affinity index (AT value), adsorption heat, X-ray diffraction (XRD), and 13C and 29Si magic-angle spinning (MAS) NMR, FTIR, and Raman spectroscopies were used to study the interaction of highly siliceous MFI-, FAU-, and FER-type zeolites with adsorbed methylamine (MA). Compared with the data for methanol, the much higher AT values and adsorption heats, and significant changes in XRD patterns, 29Si MAS NMR spectra, and FTIR spectra for the zeolites after adsorption of MA, revealed a strong hydrogen-bonding interaction between the perfect framework of the zeolites and the adsorbed MAs. This interaction results from the fact that the H atom of the amine group attacks the [Si-O] framework to form a Si-OHN bond, which leads to the appearance of Si-N bonds in the zeolites at 323 K. Therefore, the zeolite framework can be modified with MA under mild conditions. The highly siliceous MFI zeolite and the H-ZSM-5 zeolite with SiO2/Al2O3=31:1 were modified with MA and investigated by temperature-programmed desorption of CO2. The modified zeolites exhibited greatly enhanced basic properties in comparison with those of the raw materials. The influence of defects in the zeolite on the adsorption and the interaction with MA is discussed.