The extraction and utilization of sugars from readily available and cost-effective sewage sludge increases the economic potential of this residue, contributing to sustainable urban development. The work presented here presents a novel method in which sugars can be directly extracted from sewage sludge following an ultrasound + thermal–alkali pretreatment. The best results indicated that by subjecting the sludge to a 240 W ultrasound for 20 min, followed by alkali digestion using 6 mL of a 2 M NaOH solution at 48 °C for 60 min, it was possible to maximize the yield of crude sugar (34.22 wt.% dry) with the purity of crude sugar at 46.80%, reaching an extraction efficiency of 99.84%. Response surface methodology was used to optimize the crude sugar yields based on experimental data, reaching a value of 34.67 wt.% dry when employing an ultrasound exposure time of 12.5 min and 6 mL of the NaOH solution for a digestion time of 57.5 min; these results were considered consistent with the experimental data.