Unresolved problems associated with the production of graphene materials include the need for greater control over layer number, crystallinity, size, edge structure and spatial orientation, and a better understanding of the underlying mechanisms. Here we report a chemical vapor deposition approach that allows the direct synthesis of uniform single-layered, large-size (up to 10,000 μm 2 ), spatially self-aligned, and single-crystalline hexagonal graphene flakes (HGFs) and their continuous films on liquid Cu surfaces. Employing a liquid Cu surface completely eliminates the grain boundaries in solid polycrystalline Cu, resulting in a uniform nucleation distribution and low graphene nucleation density, but also enables self-assembly of HGFs into compact and ordered structures. These HGFs show an average two-dimensional resistivity of 609 AE 200 Ω and saturation current density of 0.96 AE 0.15 mA∕μm, demonstrating their good conductivity and capability for carrying high current density.atomic crystal | electronic materials G raphene has attracted considerable attention because of its extraordinary physical properties and potential electronic and spintronic applications (1-3). It is critical to find ways of precisely controlling the graphene layer number (4-6), crystallinity, size, edge structure, and even spatial orientation. The chemical vapor deposition (CVD) approach is a powerful and cost-effective technique for the production of high-quality and large-scale graphene films. In spite of the complexity of CVD procedures involving different catalysts, carbon sources, and other variables, the physical principles underlying this method are relatively simple. It is widely accepted that CVD mainly involves either surface catalytic reaction (7,8) or bulk carbon precipitation onto the surface during cooling (9, 10) for catalysts with low-carbon and high-carbon solubility, respectively. In both cases, graphene nucleation on a catalyst surface is one of the critical steps in the growth process. Various factors affect the initiation of the graphene nucleation process, including the type (11, 12) or surface microstructure of the catalyst, carbon source (13), carbon segregation from metal-carbon melts (14), processing history, and parameters in CVD growth (15)(16)(17). In general, nucleation densities on substrates such as Cu or Ni are nonuniform. This nonuniformity causes a large dispersion of both nucleus density and size distribution of graphene, representing a general problem in graphene CVD growth systems.It has been found that low-pressure CVD synthesis of graphene on Cu foil provides a good way of fabricating uniform single-layer graphene films (7). Studies have shown that the continuous films were formed by connecting randomly oriented, irregular-shaped, and micrometer-sized graphene flakes, resulting in the presence of a large amount of both low-and high-angle grain boundaries composed of pentagons and heptagons, which leads to a dramatic degradation in electronic properties compared with those of pristine graphene (7...