Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Viele Gruppen der Lebewesen, insbesondere Insekten breiten sich durch steigende Temperaturen zunehmend in Gebieten aus, in denen sie ursprünglich nicht vorkommen(Novikov und Vaulin 2014; Bebber 2015). Hierbei ist die steigende Temperatur in verschiedenen Gebieten der Hauptfaktor für Expansionen dieser Arten in Richtung des nördlichen Polarkreises. Einige dieser Arten sind sehr tolerant für verschiedene Variablen und können damit ihr Verbreitungsgebiet deutlich nach Norden hin ausdehnen. Aufgrund steigender Temperaturen werden jedoch andere Arten in ihrem Verbreitungsgebiet eingeschränkt oder ihre Verbreitung verschiebt sich in nördliche Richtung (Ogden und Lindsay 2016; Lawler et al. 2009). Auch für die Verbreitung von Krankheiten spielen Temperaturen, Ausbreitungen oder Verbreitungsverschiebungen eine wichtige Rolle (Mordecai et al. 2019). So können, durch die Etablierung der passenden Vektoren, bisher nur in wärmeren Gebieten auftretende Krankheiten zukünftig auch in unseren Breitengraden eingeschleppt und verbreitet werden. Bremsen, invasive Stechmücken aber auch einheimische Mücken tragen alle ein Potential,verschiedenste Krankheitserreger zu verbreiten, auch wenn die Eignung als Vektor für jede Art unterschiedlich groß ausfällt und manche Arten daher kaum beobachtet und untersucht werden. Mit dem Augenmerk auf sich ändernde Verbreitungsgebiete hinsichtlich zukünftigen klimatischen Veränderungen und sich wandelnden anthropogenen Einflüssen sollten jedoch auch Arten mit bisher geringem Vektorpotential mit in Beobachtungsprogramme aufgenommen werden. Wir untersuchten in Projekt I auf kontinentaler Skala die Verbreitung von sechs verschiedenen Bremsenarten und konnten sowohl Rückschlüsse auf eine mangelhafte Beobachtung der Arten ziehen als auch Artpräferenzen hinsichtlich der Landschaftsnutzung, Auswirkungen des Klimas auf die Verbreitung der Art und bisher unbekannte Toleranzen hinsichtlich tiefen Temperaturen und äußerst verkürzten Wärmeperioden aufdecken. Eine Größenordnung niedriger wurde in Projekt II, basierend auf aktuellen und Vergangenen Klimadaten, die zukünftige und aktuelle Verbreitung einer invasiven, sich zukünftig ausbreitenden Stechmückenart innerhalb Deutschlands modelliert. Durch bisherig im Untersuchungsgebiet nur begrenztes Auftreten konnten noch keine Rückschlüsse auf die unterschiedlichen Präferenzen für das Habitat gezogen werden, es können jedoch für zukünftige Berechnungen Habitatpräferenzen aus anderen Gebieten hinzugezogen werden um die Art und ihre fortschreitende Ausbreitung genauer zu beobachten. Auf der kleinsten untersuchten Ebene konnten in Projekt III innerhalb eines Mikrohabitates verschiedenste Rückschlüsse auf limitierende oder förderliche abiotische Faktoren, die teilweise bisherig nicht oder nur geringfügig beobachtet wurden, gezogen werden. Ebenfalls konnten Auswirkungen der umgebenden Landschaft auf die Abundanzen der Tiere beobachtet werden. Mithilfe von verschiedenen Modellen und in Abhängigkeit von Klimakarten, Landbedeckungsdaten und Landnutzung sowie Eigenschaften und Toleranzen der untersuchten Arten lassen sich in verschiedenen Größenordnungen geeignete Habitate von einheimischen sowie invasiven Arten identifizieren und zukünftige Verbreitungen effizient vorhersagen. Insgesamt können, basierend auf all diesen Daten, dadurch für alle untersuchten Faktoren Modelle auf andere Gebiete übertragen werden um somit potentielle Verbreitungen dort vorherzusagen. Auf unseren Daten basierend können so zum Beispiel Modellierungen für die potentielle Ausbreitung der untersuchten Tabaniden innerhalb anderer Kontinente berechnet werden und Monitoringprogramme können die Ergebnisse unserer Studie als Startpunkt aufgreifen, um durch Beprobung an modellierten Standorten die Korrektheit unserer Modelle zu überprüfen und sowohl Landschaftstypen als auch Artzusammensetzung aufzunehmen um das Modell zu bestätigen oder zu verbessern. Die Modellierung der invasiven Art Aedes albopictus bietet die Möglichkeit, diese Art in Zukunft innerhalb der möglichen Ausbreitungskorridore genauer zu beobachten um ihre fortschreitende Verbreitung zu verifizieren oder eventuelle Änderungen des klimatischen Verlaufes mit einzubinden und das Modell anzupassen. Die Untersuchung des Mikrohabitats von Culex pipiens pipiens und Culex torrentium bietet, auch hinsichtlich anderer Arten in diesem Habitat, eine potente Methode, Vorhersagen für Artvorkommen innerhalb anderer Unterirdischen Objekte zu berechnen. Hier können, bei ausreichend großer Datenlage, eine Vielzahl von Faktoren in die Auswertung mit einfließen. Die durchgeführten Studien bestätigen die Notwendigkeit für verbesserte Monitoringkonzepte für alle vektorkompetenten Tiergruppen hinsichtlich der sich ändernden klimatischen Bedingungen, des globalen Handels und die sich wandelnde Nutzung der Landschaften durch den Menschen und darin begründete Veränderungen der Artenzusammensetzung eines Habitates, zeigen Möglichkeiten, diese Konzepte mit bisher ungenutzten Daten aufzubauen und zu verbessern und können gleichzeitig zu deren Verbesserung herangezogen werden.
Viele Gruppen der Lebewesen, insbesondere Insekten breiten sich durch steigende Temperaturen zunehmend in Gebieten aus, in denen sie ursprünglich nicht vorkommen(Novikov und Vaulin 2014; Bebber 2015). Hierbei ist die steigende Temperatur in verschiedenen Gebieten der Hauptfaktor für Expansionen dieser Arten in Richtung des nördlichen Polarkreises. Einige dieser Arten sind sehr tolerant für verschiedene Variablen und können damit ihr Verbreitungsgebiet deutlich nach Norden hin ausdehnen. Aufgrund steigender Temperaturen werden jedoch andere Arten in ihrem Verbreitungsgebiet eingeschränkt oder ihre Verbreitung verschiebt sich in nördliche Richtung (Ogden und Lindsay 2016; Lawler et al. 2009). Auch für die Verbreitung von Krankheiten spielen Temperaturen, Ausbreitungen oder Verbreitungsverschiebungen eine wichtige Rolle (Mordecai et al. 2019). So können, durch die Etablierung der passenden Vektoren, bisher nur in wärmeren Gebieten auftretende Krankheiten zukünftig auch in unseren Breitengraden eingeschleppt und verbreitet werden. Bremsen, invasive Stechmücken aber auch einheimische Mücken tragen alle ein Potential,verschiedenste Krankheitserreger zu verbreiten, auch wenn die Eignung als Vektor für jede Art unterschiedlich groß ausfällt und manche Arten daher kaum beobachtet und untersucht werden. Mit dem Augenmerk auf sich ändernde Verbreitungsgebiete hinsichtlich zukünftigen klimatischen Veränderungen und sich wandelnden anthropogenen Einflüssen sollten jedoch auch Arten mit bisher geringem Vektorpotential mit in Beobachtungsprogramme aufgenommen werden. Wir untersuchten in Projekt I auf kontinentaler Skala die Verbreitung von sechs verschiedenen Bremsenarten und konnten sowohl Rückschlüsse auf eine mangelhafte Beobachtung der Arten ziehen als auch Artpräferenzen hinsichtlich der Landschaftsnutzung, Auswirkungen des Klimas auf die Verbreitung der Art und bisher unbekannte Toleranzen hinsichtlich tiefen Temperaturen und äußerst verkürzten Wärmeperioden aufdecken. Eine Größenordnung niedriger wurde in Projekt II, basierend auf aktuellen und Vergangenen Klimadaten, die zukünftige und aktuelle Verbreitung einer invasiven, sich zukünftig ausbreitenden Stechmückenart innerhalb Deutschlands modelliert. Durch bisherig im Untersuchungsgebiet nur begrenztes Auftreten konnten noch keine Rückschlüsse auf die unterschiedlichen Präferenzen für das Habitat gezogen werden, es können jedoch für zukünftige Berechnungen Habitatpräferenzen aus anderen Gebieten hinzugezogen werden um die Art und ihre fortschreitende Ausbreitung genauer zu beobachten. Auf der kleinsten untersuchten Ebene konnten in Projekt III innerhalb eines Mikrohabitates verschiedenste Rückschlüsse auf limitierende oder förderliche abiotische Faktoren, die teilweise bisherig nicht oder nur geringfügig beobachtet wurden, gezogen werden. Ebenfalls konnten Auswirkungen der umgebenden Landschaft auf die Abundanzen der Tiere beobachtet werden. Mithilfe von verschiedenen Modellen und in Abhängigkeit von Klimakarten, Landbedeckungsdaten und Landnutzung sowie Eigenschaften und Toleranzen der untersuchten Arten lassen sich in verschiedenen Größenordnungen geeignete Habitate von einheimischen sowie invasiven Arten identifizieren und zukünftige Verbreitungen effizient vorhersagen. Insgesamt können, basierend auf all diesen Daten, dadurch für alle untersuchten Faktoren Modelle auf andere Gebiete übertragen werden um somit potentielle Verbreitungen dort vorherzusagen. Auf unseren Daten basierend können so zum Beispiel Modellierungen für die potentielle Ausbreitung der untersuchten Tabaniden innerhalb anderer Kontinente berechnet werden und Monitoringprogramme können die Ergebnisse unserer Studie als Startpunkt aufgreifen, um durch Beprobung an modellierten Standorten die Korrektheit unserer Modelle zu überprüfen und sowohl Landschaftstypen als auch Artzusammensetzung aufzunehmen um das Modell zu bestätigen oder zu verbessern. Die Modellierung der invasiven Art Aedes albopictus bietet die Möglichkeit, diese Art in Zukunft innerhalb der möglichen Ausbreitungskorridore genauer zu beobachten um ihre fortschreitende Verbreitung zu verifizieren oder eventuelle Änderungen des klimatischen Verlaufes mit einzubinden und das Modell anzupassen. Die Untersuchung des Mikrohabitats von Culex pipiens pipiens und Culex torrentium bietet, auch hinsichtlich anderer Arten in diesem Habitat, eine potente Methode, Vorhersagen für Artvorkommen innerhalb anderer Unterirdischen Objekte zu berechnen. Hier können, bei ausreichend großer Datenlage, eine Vielzahl von Faktoren in die Auswertung mit einfließen. Die durchgeführten Studien bestätigen die Notwendigkeit für verbesserte Monitoringkonzepte für alle vektorkompetenten Tiergruppen hinsichtlich der sich ändernden klimatischen Bedingungen, des globalen Handels und die sich wandelnde Nutzung der Landschaften durch den Menschen und darin begründete Veränderungen der Artenzusammensetzung eines Habitates, zeigen Möglichkeiten, diese Konzepte mit bisher ungenutzten Daten aufzubauen und zu verbessern und können gleichzeitig zu deren Verbesserung herangezogen werden.
Background More than 170 species of tabanids are known in Europe, with many occurring only in limited areas or having become very rare in the last decades. They continue to spread various diseases in animals and are responsible for livestock losses in developing countries. The current monitoring and recording of horseflies is mainly conducted throughout central Europe, with varying degrees of frequency depending on the country. To the detriment of tabanid research, little cooperation exists between western European and Eurasian countries. Methods For these reasons, we have compiled available sources in order to generate as complete a dataset as possible of six horsefly species common in Europe. We chose Haematopota pluvialis, Chrysops relictus, C. caecutiens, Tabanus bromius, T. bovinus and T. sudeticus as ubiquitous and abundant species within Europe. The aim of this study is to estimate the distribution, land cover usage and niches of these species. We used a surface-range envelope (SRE) model in accordance with our hypothesis of an underestimated distribution based on Eurocentric monitoring regimes. Results Our results show that all six species have a wide range in Eurasia, have a broad climatic niche and can therefore be considered as widespread generalists. Areas with modelled habitat suitability cover the observed distribution and go far beyond these. This supports our assumption that the current state of tabanid monitoring and the recorded distribution significantly underestimates the actual distribution. Our results show that the species can withstand extreme weather and climatic conditions and can be found in areas with only a few frost-free months per year. Additionally, our results reveal that species prefer certain land-cover environments and avoid other land-cover types. Conclusions The SRE model is an effective tool to calculate the distribution of species that are well monitored in some areas but poorly in others. Our results support the hypothesis that the available distribution data underestimate the actual distribution of the surveyed species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.