Both the cortex and the subcortical structures are organized into a large number of distinct areas reflecting functional and cytoarchitectonic differences. Mapping these areas is of fundamental importance to neuroscience.A central obstacle to this task is the inaccuracy associated with mapping results from individuals into a common space. The vast individual differences in morphology pose a serious problem for volumetric registration. Surfacebased approaches fare substantially better, but have thus far been used only for cortical parcellation. We extend this surface-based approach to include also the subcortical deep gray-matter structures. Using the life-span data from the Enhanced Nathan Klein Institute -Rockland Sample, comprised of data from 590 individuals from 6 to 85 years of age, we generate a functional parcellation of both the cortical and subcortical surfaces. To assess this extended parcellation, we show that our extended functional parcellation provides greater homogeneity of functional connectivity patterns than * These two authors contributed equally.do arbitrary parcellations matching in the number and size of parcels. We also show that our subcortical parcels align with known subnuclei. Further, we show that this parcellation is appropriate for use with data from other modalities; we generate cortical and subcortical white/gray contrast measures for this same dataset, and draw on the fact that areal differences are evident in the relation of white/gray contrast to age, to sex, to brain volume, and to interactions of these terms; we show that our extended functional parcellation provides an improved fit to the complexity of the life-span changes in the white/gray contrast data compared to arbitrary parcellations matching in the number and size of parcels. We provide our extended functional parcellation for the use of the neuroimaging community.