The gonadotropin-releasing hormone (GnRH) neuronal network generates pulse and surge modes of gonadotropin secretion critical for puberty and fertility. The arcuate nucleus kisspeptin neurons that innervate the projections of GnRH neurons in and around their neurosecretory zone are key components of the pulse generator in all mammals. By contrast, kisspeptin neurons located in the preoptic area project to GnRH neuron cell bodies and proximal dendrites and are involved in surge generation in female rodents (and possibly other species). The hypothalamic-pituitary-gonadal axis develops embryonically but, apart from short periods of activation immediately after birth, remains suppressed through a combination of gonadal and non-gonadal mechanisms. At puberty onset, the pulse generator reactivates, probably owing to progressive stimulatory influences on GnRH neurons from glial and neurotransmitter signalling, and the re-emergence of stimulatory arcuate kisspeptin input. In females, the development of pulsatile gonadotropin secretion enables final maturation of the surge generator that ultimately triggers the first ovulation. Representation of the GnRH neuronal network as a series of interlocking functional modules could help conceptualization of its functioning in different species. Insights into pulse and surge generation are expected to aid development of therapeutic strategies ameliorating pubertal disorders and infertility in the clinic.