Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Acute Interstitial Pneumonia (AIP) represents a severe form of diffuse lung injury within the idiopathic interstitial pneumonia spectrum. Given the limited understanding of its molecular basis, this study aims to elucidate AIP's genomic and transcriptomic profiles to uncover its pathophysiological underpinnings and identify potential therapeutic targets. We conducted a comprehensive analysis of genomic and transcriptomic data from lung tissues of 15 AIP patients. This included assessing differentially expressed genes (DEGs) and identifying mutations in exonic coding variants, as well as analysing expression quantitative trait loci (eQTL) profiles to link non‐coding SNP genotypes with gene expression levels. Transcriptomic analysis revealed a significant upregulation of genes linked to the Type I interferon receptor and keratin filament, and a downregulation of genes related to focal adhesion and endothelial integrity, compared to healthy individuals. These patterns were distinct from those observed in idiopathic pulmonary fibrosis (IPF) and non‐IPF interstitial lung diseases (ILDs). Genomic analysis highlighted mutations in genes associated with keratin and the extracellular matrix. Additionally, eQTL profiling provided insights into the genetic regulation of gene expression in AIP. Our findings reveals AIP's unique molecular landscape, differentiating it from other ILDs and laying the groundwork for future diagnostic and therapeutic research.
Acute Interstitial Pneumonia (AIP) represents a severe form of diffuse lung injury within the idiopathic interstitial pneumonia spectrum. Given the limited understanding of its molecular basis, this study aims to elucidate AIP's genomic and transcriptomic profiles to uncover its pathophysiological underpinnings and identify potential therapeutic targets. We conducted a comprehensive analysis of genomic and transcriptomic data from lung tissues of 15 AIP patients. This included assessing differentially expressed genes (DEGs) and identifying mutations in exonic coding variants, as well as analysing expression quantitative trait loci (eQTL) profiles to link non‐coding SNP genotypes with gene expression levels. Transcriptomic analysis revealed a significant upregulation of genes linked to the Type I interferon receptor and keratin filament, and a downregulation of genes related to focal adhesion and endothelial integrity, compared to healthy individuals. These patterns were distinct from those observed in idiopathic pulmonary fibrosis (IPF) and non‐IPF interstitial lung diseases (ILDs). Genomic analysis highlighted mutations in genes associated with keratin and the extracellular matrix. Additionally, eQTL profiling provided insights into the genetic regulation of gene expression in AIP. Our findings reveals AIP's unique molecular landscape, differentiating it from other ILDs and laying the groundwork for future diagnostic and therapeutic research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.