Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Over the past two decades, the development and commercialization of slow-release fertilizers (SRFs) have significantly advanced, with the primary aim of mitigating environmental issues associated with excessive fertilizer use. A range of methodologies, including chemical and physical reactions, incorporation into carriers with porous and layered structures, and coating techniques, have been explored and refined. On the other hand, global challenges such as drought and desertification further underscore the need for SRFs that not only control nutrient release but also improve soil moisture retention. This paper reviews the development and application of eco-friendly starch hydrogels as fertilizer carriers and water retention for SRFs, particularly starch-based superabsorbent polymers (SAPs) produced through grafting copolymerization with acrylamide. This review explores both scientific issues, such as the microstructures and releasing mechanisms of SAPs, and technical development, involving copolymerization technologies, multi-initialization processes, methods of loading fertilizer into hydrogel, etc. Starch, as both a biodegradable and renewable carbohydrate polymer, offers distinct advantages due to its excellent chemical stability and high reactivity. The fabrication techniques of SAPs have been developed from traditional batch polymerization in aqueous solutions to more efficient, solvent-free reactive extrusion. The benefits of SRFs based on SAPs encompass enhanced soil aeration, the prevention of soil deterioration, the minimization of water evaporation, environmental pollution control, reduction in plant mortality, and prolonged nutrient retention within soil. In this review, we summarize the current progress, identify limitations in existing technologies, and propose future research directions to further enhance the performance of starch-based SRFs.
Over the past two decades, the development and commercialization of slow-release fertilizers (SRFs) have significantly advanced, with the primary aim of mitigating environmental issues associated with excessive fertilizer use. A range of methodologies, including chemical and physical reactions, incorporation into carriers with porous and layered structures, and coating techniques, have been explored and refined. On the other hand, global challenges such as drought and desertification further underscore the need for SRFs that not only control nutrient release but also improve soil moisture retention. This paper reviews the development and application of eco-friendly starch hydrogels as fertilizer carriers and water retention for SRFs, particularly starch-based superabsorbent polymers (SAPs) produced through grafting copolymerization with acrylamide. This review explores both scientific issues, such as the microstructures and releasing mechanisms of SAPs, and technical development, involving copolymerization technologies, multi-initialization processes, methods of loading fertilizer into hydrogel, etc. Starch, as both a biodegradable and renewable carbohydrate polymer, offers distinct advantages due to its excellent chemical stability and high reactivity. The fabrication techniques of SAPs have been developed from traditional batch polymerization in aqueous solutions to more efficient, solvent-free reactive extrusion. The benefits of SRFs based on SAPs encompass enhanced soil aeration, the prevention of soil deterioration, the minimization of water evaporation, environmental pollution control, reduction in plant mortality, and prolonged nutrient retention within soil. In this review, we summarize the current progress, identify limitations in existing technologies, and propose future research directions to further enhance the performance of starch-based SRFs.
High nitrogen (N) losses and low nitrogen utilisation efficiency (NUE) of conventional-nitrogen fertilisers (CNFs) are due to a mismatch between N-delivery and plant demand; thus, slow-release N fertilisers (SRNFs) are designed to improve the match. A quantitative synthesis is lacking to provide the overall assessment of SRNFs on pasture. This meta-analysis analyses application rate and type of SRNFs on N losses and agronomic performances with 65 data points from 14 studies in seven countries. Standardized mean difference of SRNFs for nitrate leaching losses and N2O emission were −0.87 and −0.69, respectively, indicating their effectiveness in controlling losses. Undesirably, SRNFs had a more negative impact on dry matter (DM) yield and NUE than CNFs. Subgroup analysis showed that SRNF type and application rate had an impact on all tested parameters. The biodegradable coating-type of SRNF outperformed other types in controlling N losses and improving agronomic performances. High application rates (>100 kg N ha−1) of SRNFs are more effective in controlling N losses. In conclusion, SRNFs are more conducive to controlling N losses, but they showed a negative impact on yield and NUE in pasture. Further studies are recommended to assess the efficacy of SRNFs developed using advanced technologies to understand their impact on pastoral agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.