Cycloadditions are widely accepted as a group of reactions that rapidly generate molecular complexity. Being highly atom economic and often predictable, these reactions can generate up to four stereogenic centers and two C‐C (or C‐X) bonds in one reaction step. During the last two decades, asymmetric aminocatalysis has shown to be a successful strategy for controlling stereoselectivity and enabling reactivity of cycloaddition reactions. By increasing the conjugation of the carbonyl species employed, dienamines and trienamines can be catalytically formed. Not only can these facilitate the cycloaddition, often accompanied by high levels of stereocontrol, but they also leave a residual enamine or carbonyl (by hydrolysis) in the cycloadduct. This residual functionality can engage in further intramolecular reactions generating complex cyclic systems in a one‐pot cascade manner. In this regard, asymmetric aminocatalysis can add another layer of complexity to the already complex nature of cycloadditions. In this review, we will present the general concept of such reactivity patterns of dienamines and trienamines, and hereafter showcase examples in the literature. We aspire that the chemical community can use these concepts to design new enantioselective aminocatalytic cascade reactions to access enantioenriched, complex compounds, and perhaps use these in complex molecule synthesis.