Carbonyldinitrosyltris(fluorosulfato)tungstate(II) and -molybdate-(II) anions, [fac-M(CO)(NO)2(SO3F)3]- (M=W, Mo), which are novel weakly coordinating anions that contain a metal carbonyl/nitrosyl moiety, have been generated in fluorosulfonic acid and completely characterized by multinuclear NMR, IR, and Raman spectroscopy as well as ESI mass spectrometry. ESI MS measurements performed for the first time on a superacidic solution system unambiguously reveal the formation of the monoanionic, mononuclear W and Mo complexes formulated as [M(CO)(NO)2(SO3F)3]- (M=W, Mo). Multinuclear NMR spectroscopic studies at natural abundance and 13C and 15N enrichment clearly indicate the presence of one CO ligand, two equivalent NO ligands, and two types of nonequivalent SO3F- groups in a 2:1 ratio. The IR and Raman spectra reveal that the two equivalent NO ligands have a cis conformation, thus indicating a fac structure. Density functional calculations at the B3LYP level of theory predict that these anions have a singlet ground state (1A) with a Cs symmetry along with C-O and N-O vibrational frequencies that are in agreement with the experimental observations. Mulliken population analysis shows that the monovalent negative charge is dispersed on the bulky sphere, the surface of which is covered by all the negatively charged O and F atoms with charge densities much lower than SO3F-, suggesting that [fac-M(CO)(NO)2(SO3F)3]- (M=W, Mo) are weakly nucleophilic and poorly coordinating anions.