1. Human perceptual learning in discrimination of the oblique orientation was studied using psychophysical methods. Subjects were trained daily to improve their ability to identify the orientation of a circular 2-5 deg diameter unidimensional noise field. Dramatic improvements in sensitivity to contour orientation occurred over a period of 15-20 days. The improved performance persisted for several months. Improvement was more evident between daily sessions than within sessions. This was partly due to fatigue interfering with the learning effect. Moreover, a consolidation period seemed to be required. 2. Improvement was restricted to the position of the stimulus being trained. This position dependency of the learning effect proved very precise. After training at a specific stimulus position, merely displacing the stimulus to an adjacent position caused a marked increase in thresholds.3. No transfer of the training effect was observed between orientations. Following a shift of 90 deg away from the trained orientation, performance fell, even below the initial level. 4. We observed complete to almost complete transfer between the two eyes. 5. Our results suggest plastic changes at a level of the visual processing stream where input from both eyes has come together, but where generalization for spatial localization and orientation has not yet occurred.