This paper is a fundamental study of the Real 2-representation theory of 2-groups. It also contains many new results in the ordinary (non-Real) case. Our framework relies on a 2-equivariant Morita bicategory, where a novel construction of induction is introduced. We identify the Grothendieck ring of Real 2-representations as a Real variant of the Burnside ring of the fundamental group of the 2-group and study the Real categorical character theory. This paper unifies two previous lines of inquiry, the approach to 2-representation theory via Morita theory and Burnside rings, initiated by the first author and Wendland, and the Real 2-representation theory of 2-groups, as studied by the second author.