In the last ten years, two-dimensional infrared spectroscopy has become an important technique for studying molecular structures and dynamics. We report the implementation of heterodyne detected two-dimensional sum-frequency generation (HD 2D SFG) spectroscopy, which is the analog of 2D infrared (2D IR) spectroscopy, but is selective to noncentrosymmetric systems such as interfaces. We implement the technique using mid-IR pulse shaping, which enables rapid scanning, phase cycling, and automatic phasing. Absorptive spectra are obtained, that have the highest frequency resolution possible, from which we extract the rephasing and nonrephasing signals that are sometimes preferred. Using this technique, we measure the vibrational mode of CO adsorbed on a polycrystalline Pt surface. The 2D spectrum reveals a significant inhomogenous contribution to the spectral line shape, which is quantified by simulations. This observation indicates that the surface conformation and environment of CO molecules is more complicated than the simple "atop" configuration assumed in previous work. Our method can be straightforwardly incorporated into many existing SFG spectrometers. The technique enables one to quantify inhomogeneity, vibrational couplings, spectral diffusion, chemical exchange, and many other properties analogous to 2D IR spectroscopy, but specifically for interfaces. multidimensional spectroscopy | vibrational spectroscopy | surface-sensitive | Pt catalysis | CO monolayer M olecular spectroscopies are some of the best tools for studying structures and dynamics. Two particularly useful variants are sum-frequency generation (SFG) and two-dimensional infrared (2D IR) spectroscopy. SFG spectroscopy provides a vibrational spectrum of molecular systems that lack an inversion center (1), and so has become a valuable tool for probing interfaces because no signal arises from the bulk. SFG spectroscopy has helped reveal the surface structure of liquids, characterize the surfaces of materials, and probe membrane proteins, to name only a few applications (2-5). 2D IR spectroscopy is also a vibrational spectroscopy, although not interface specific. 2D IR spectroscopy spreads the infrared spectrum into a second coordinate so that coupled vibrational modes are correlated by cross peaks, vibrational dynamics quantified by 2D line shapes, and energy transfer or chemical exchange revealed from peak intensities (6-8), in addition to many other capabilities not possible with linear one-dimensional (1D) vibrational spectroscopies like SFG spectroscopy. 2D IR spectroscopy is now being used to study protein structure and dynamics, solvent dynamics, charge transfer in semiconductors, and many other processes (9-12). These two techniques might be considered the core technologies of modern infrared spectroscopy.In this article, we combine the surface sensitivity of SFG spectroscopy with the multidimensional capabilities of 2D IR spectroscopy in a technique that we call heterodyne detected (HD) 2D SFG spectroscopy. With this technique, one obtain...