An attempt to simplify the approach to the problems of room-temperature superconductors was done. The key factor has been highlighted-a giant spin-orbit interaction as a result of specific geometry of crystal. Considering oriented carbyne as an example, it was shown that maximal value of SOC was attained in low-dimensional systems. A qualitative model of superconductivity in the localized phase with "pseudo-magnetic field" and "Rashba effective field" as parameters was presented. Their correlation was shown via geometry of electric microfields of crystal. Oriented carbyne was presented as localized phase of room-temperature superconductor and the recipe of its transformation to macroscopic superconductivity was given.