Parthenogenesis is a form of clonal reproduction. Eggs develop in the absence of sperm and offspring are genetically identical to their mother. Although common in invertebrates, it occurs in only a few species of squamate reptiles. Parthenogenetic reptiles have their origin in interspecific hybridization, and their populations are exclusively female. Because of its high mutation rate and maternal inheritance, mitochondrial DNA sequence data can evaluate the origin and evolution of all-female vertebrates. Partial sequences from two mitochondrial genes, Cytb and ND4, were analyzed to investigate questions about the origin of parthenogenesis in the Aspidoscelis cozumela complex, which includes A. cozumela, A. maslini and A. rodecki. Low levels of divergence were detected among parthenogenetic species, and between them and A. angusticeps, confirming it as the maternal species of the parthenoforms. A gene tree was constructed using sequences from three populations of A. angusticeps and nine of its unisexual daughter species. The phylogeny suggests that two independent hybridization events between A. angusticeps and A. deppii formed three unisexual species. One hybridization resulted in A. rodecki and the other formed A. maslini and A. cozumela. Although A. cozumela has the haplotype characteristic of A. maslini from Puerto Morelos, it is considered to be a different species based on karyological and morphological characteristics and its geographical isolation.