Nothing is known on the impact of developmental divergence on periodontal tissue regeneration in vertebrate animals. Molecularly, the induction of tooth morphogenesis is highly conserved deploying across animal phyla a constant and reproducible set of gene pathways, which result in morphogenesis of multiple odontode forms and shapes. Genetic mutations positively affect animal speciation via evolving biting and masticatory forces as well as dietary habits selectively imprinted in animal phyla during evolutionary speciation. The geometry of the attachment apparatus of a tooth is important for the interpretation of the induction of cementogenesis with de novo Sharpey's fibres as in thecodonty, ie, a tripartite attachment of alveolar bone, periodontal ligament and cementum. This review addresses the tooth implantation in different animal clades from the fibrous attachment of the Elasmobranch Carcharinus obscurus dusky shark, reviewing the evolution and functional significance of cementum with functionally inserted Sharpey's fibres. In sharks there is a continuous tooth replacement mechanistically supported by the continuously erupting dental lamina. We show that the arching of the continuously erupting dental lamina, a critical step for the selachians' tooth differentiation, is prominently characterized by transforming growth factor-β (TGF-β ) expression not only within the dental lamina but also in cellular condensations in the mesenchymal tissues of the erupting tooth. Such findings indicate the pleiotropic multifaceted activity of a highly conserved mammalian gene across genera, masterminding tooth morphogenesis in both selachians and mammals as well as periodontal tissue induction in the non-human primate Papio ursinus. In P. ursinus, the induction of cementogenesis entails the expression of TGF-β and osteocalcin with fine-tuning and regulation of bone morphogenetic proteins BMP-2 and BMP-7, and upregulation of TGF-β . TGF-β autoinduction and upregulation during the induction of cementogenesis and osteogenesis in P. ursinus provide novel insights into the induction of cementogenesis. It is hypothesized that the evolutionary expression and upregulation of the TGF-β gene may provide the mechanistic insights into the induction of extensive cementogenesis as seen in stem mammals and the induction of trabecular-like cementum formation in mosasaurs' tooth attachment. Aspidin, the precursor of cementum, was reported to appear 310-330 million years ago (Ma) in Odontostraci armoured fish. Studies showed that the differentiation of cementum with inserted Sharpey's fibres is also present in lower amniotes such as Diatectomorpha or Diadectidae, the first herbivorous tetrapods, 323 Ma. In mosasaurs, 168-165 Ma, there is the induction of extensive trabeculation of cementum though nothing is known on the phylogenetic temporo-spatial evolution of cementum before Diadectidae and stem mammals. The large trabeculations of cementum as seen in the attachment of extinct mosasaurs invocates a pleiotropic capacity of cemental growth pre...