Abstract:Travel time reliability (TTR) is an important performance indicator for transportation systems. TTR can be generally categorized as either segment based or origin–destination (O-D) based. A primary difference between the two TTR estimations is that route information is implied in segment-based TTR estimations. Segment-based TTR estimations have been widely studied in previous research; however, O-D–based TTR estimations are used infrequently. This paper provides detailed insight into O-D–based TTR estimations … Show more
“…In order to evaluate OD, it is necessary to set various indexes to evaluate passengers' behaviors quantitatively. Yang S used taxi GPS data to estimate OD travel time, which helps to analyze the route preference of passengers [14]. Margaretic P applied the spatial economic flow model and characteristic function spatial filtering method to air transportation, and discussed the impact of departure destination on air passenger flow [15].…”
Section: Introductionmentioning
confidence: 99%
“…Direction and stations of Nanjing metro lines 15,14,13,12,11,10,9,8,7,6,5,41,42,43,44,45,46,47,48,49,50,. 51, 52, 53, 54, 55] …”
The information level of the urban public transport system is constantly improving, which promotes the use of smart cards by passengers. The OD (origination–destination) travel time of passengers reflects the temporal and spatial distribution of passenger flow. It is helpful to improve the flow efficiency of passengers and the sustainable development of the city. It is an urgent problem to select appropriate indexes to evaluate OD travel time and analyze the correlation of these indexes. More than one million OD records are generated by the AFC (Auto Fare Collection) system of Nanjing metro every day. A complex network method is proposed to evaluate and analyze OD travel time. Five working days swiping data of Nanjing metro are selected. Firstly, inappropriate data are filtered through data preprocessing. Then, the OD travel time indexes can be divided into three categories: time index, complex network index, and composite index. Time index includes use time probability, passenger flow between stations, average time between stations, and time variance between stations. The complex network index is based on two models: Space P and ride time, including the minimum number of rides, and the shortest ride time. Composite indicators include inter site flow efficiency and network flow efficiency. Based on the complex network model, this research quantitatively analyzes the Pearson correlation of the indexes of OD travel time. This research can be applied to other public transport modes in combination with big data of public smart cards. This will improve the flow efficiency of passengers and optimize the layout of the subway network and urban space.
“…In order to evaluate OD, it is necessary to set various indexes to evaluate passengers' behaviors quantitatively. Yang S used taxi GPS data to estimate OD travel time, which helps to analyze the route preference of passengers [14]. Margaretic P applied the spatial economic flow model and characteristic function spatial filtering method to air transportation, and discussed the impact of departure destination on air passenger flow [15].…”
Section: Introductionmentioning
confidence: 99%
“…Direction and stations of Nanjing metro lines 15,14,13,12,11,10,9,8,7,6,5,41,42,43,44,45,46,47,48,49,50,. 51, 52, 53, 54, 55] …”
The information level of the urban public transport system is constantly improving, which promotes the use of smart cards by passengers. The OD (origination–destination) travel time of passengers reflects the temporal and spatial distribution of passenger flow. It is helpful to improve the flow efficiency of passengers and the sustainable development of the city. It is an urgent problem to select appropriate indexes to evaluate OD travel time and analyze the correlation of these indexes. More than one million OD records are generated by the AFC (Auto Fare Collection) system of Nanjing metro every day. A complex network method is proposed to evaluate and analyze OD travel time. Five working days swiping data of Nanjing metro are selected. Firstly, inappropriate data are filtered through data preprocessing. Then, the OD travel time indexes can be divided into three categories: time index, complex network index, and composite index. Time index includes use time probability, passenger flow between stations, average time between stations, and time variance between stations. The complex network index is based on two models: Space P and ride time, including the minimum number of rides, and the shortest ride time. Composite indicators include inter site flow efficiency and network flow efficiency. Based on the complex network model, this research quantitatively analyzes the Pearson correlation of the indexes of OD travel time. This research can be applied to other public transport modes in combination with big data of public smart cards. This will improve the flow efficiency of passengers and optimize the layout of the subway network and urban space.
“…Comparison studies are limited, though. In [13], the authors concluded that there were no significant differences between O-D-based and route-based estimates in most part of the studied time periods. In [14], the researchers found that adding an alternative path tends to decrease the O-D-based TTR.…”
Section: Introductionmentioning
confidence: 86%
“…), there are some other TTR measures, such as travel time variability (TTV), planning travel time index (PI), and buffer index (BI). Among these measures, BI has been widely utilized in existing literature [7,8,13,27,28] and as concluded in [29] has a high consistency with the coefficient of variation and thus is best suitable for the measure of TTR. e authors adopted the idea and took BI as the primary TTR measure.…”
Origin-destination- (O-D-) based travel time reliability (TTR) is fundamental to next-generation navigation tools aiming to provide both travel time and reliability information. While previous works are mostly focused on route-based TTR and use either ad hoc data or simulation in the analyses, this study uses open-source Uber Movement and Weather Underground data to systematically analyze the impact of rainfall intensity on O-D-based travel time reliability. The authors classified three years of travel time data in downtown Boston into one hundred origin-destination pairs and integrated them with the weather data (rain). A lognormal mixture model was applied to fit travel time distributions and calculate the buffer index. The median, trimmed mean, interquartile range, and one-way analysis of variance were used for quantification of the characteristics. The study found some results that tended to agree with the previous findings in the literature, such that, in general, rain reduces the O-D-based travel time reliability, and some seemed to be unique and worthy of discussion: firstly, although in general the reduction in travel time reliability gets larger as the intensity of rainfall increases, it appears that the change is more significant when rainfall intensity changes from light to moderate but becomes fairly marginal when it changes from normal to light or from moderate to extremely intensive; secondly, regardless of normal or rainy weather, the O-D-based travel time reliability and its consistency in different O-D pairs with similar average travel time always tend to improve along with the increase of average travel time. In addition to the technical findings, this study also contributes to the state of the art by promoting the application of real-world and publicly available data in TTR analyses.
“…Each hidden traffic state was represented by a Gaussian distribution. Using Gaussian mixture distributions to model travel-time distribution is reasonable because previous studies (e.g., Yang et al 2017;Yang and Wu 2016;Jenelius and Koutsopoulos 2015;Feng et al 2014;Guo et al 2011) have shown that they can effectively determine travel-time distributions when traffic is heterogeneous. Hofleitner and Bayen's algorithm (2011) then used numerical optimization methods to achieve optimized TTD.…”
Section: Previous Studies and Problem Statementmentioning
Bluetooth-based traffic detection is an emerging travel time collection technique; however, its use on arterials has been limited due to several challenges. In particular, data missing not at random (MNAR) is a common data set problem caused by system network failure or sensor malfunctioning. Solving the MNAR problem requires travel-time decomposition (TTD) using complete travel times spanning successive links. Previous work has focused on TTD methodologies that use probe vehicle data. However, these approaches may be unsuitable for Bluetooth-based data. Therefore, this study proposes a machine learning-based approach to decomposing Bluetooth-based travel time. A modified hidden Markov model was developed to model travel-time distributions and traffic-state transitions. A genetic algorithm (GA) was applied to solve a numerical optimal decomposition based on maximum likelihood. Two real-world travel-time data sets were used for validation of the approach. The proposed hidden Markov chain with GA (HMMGA) approach and Gaussian mixture model with GA (GMMGA) were compared with a benchmark approach using distance-based allocation. The results showed that the HMMGA significantly outperformed both the GMMGA and benchmark approaches. Using the HMMGA, the average mean absolute percentage error was up to 72% lower compared to the benchmark approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.