2015
DOI: 10.1039/c4cp04398g
|View full text |Cite
|
Sign up to set email alerts
|

Origin of magnetocapacitance in chemically homogeneous and inhomogeneous ferrites

Abstract: The present work mainly focuses on the magnetodielectric (MD) effect in polycrystalline Ni0.9-yCuyZn0.1Fe1.98O3.97 (y = 0, 0.1, 0.2, 0.3, 0.4, 0.5) ferrite synthesized by a solid-state reaction method. Sintered samples showed the formation of CuO-rich grain boundary segregation for y≥ 0.2. The appearance of segregation made the present material chemically inhomogeneous and electrically heterogeneous. A negative MD response was observed in homogeneous ferrite for y = 0 and 0.1 due to lattice distortion (an intr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
2
0
2

Year Published

2015
2015
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(5 citation statements)
references
References 46 publications
1
2
0
2
Order By: Relevance
“…Whereas in the present study and in our previous works [(1 − x)PNNZT-xCFO (x ⩽ 0.20)] [9] the linear trend in MD(%) as a function of the applied field is observed. Similar behavior has also been reported in CFO/Bi 5 Ti 3 FeO 15 bilayer composite heterostructural films [23], CFO/PZT particulate composite thin film [24] and other ferrite based systems [22,25,26]. However, in nanocrystalline ferrite thin films, high field susceptibility is observed to be significant in most cases.…”
Section: Resultssupporting
confidence: 81%
“…Whereas in the present study and in our previous works [(1 − x)PNNZT-xCFO (x ⩽ 0.20)] [9] the linear trend in MD(%) as a function of the applied field is observed. Similar behavior has also been reported in CFO/Bi 5 Ti 3 FeO 15 bilayer composite heterostructural films [23], CFO/PZT particulate composite thin film [24] and other ferrite based systems [22,25,26]. However, in nanocrystalline ferrite thin films, high field susceptibility is observed to be significant in most cases.…”
Section: Resultssupporting
confidence: 81%
“…The magnetodielectric effect works through the magn etic phase in magnetoelectric materials. In fact, it can even appear in pure ferrite at high frequency [36][37][38]. Therefore, the magnetodi electric effect is obvious in NZFO and becomes weak in com posites with high PZT content and disappears in pure PZT, as shown in figure 6.…”
Section: Magnetic Effectmentioning
confidence: 96%
“…Subsequently, weak magnetodielectric effects at room temperature have been observed in multiferroic composite core/shell CrO 2 /Cr 2 O 3 [29], BaTiO 3 /LaMnO 3 [30] and BaTiO 3 @γFe 2 O 3 [31], and in the singlephase multiferroics LaSrCoMnO 6 [32], DyFe 0.5 Cr 0.5 O 3 [33] and LaGa 1−x Mn x O 3 [34] at low temperature and high magnetic field. Magnetodielectric effects were also found in the magn etic composites SiO 2 @Fe 3 O 4 [35] and Fe 2 O 3 ·SiO 2 [15], and even ferrites [36][37][38] without the ferroelectric phase due to negative magnetoresistance and the different electrical prop erties of the grain and grain boundary. Other intrinsic mech anisms for magnetodielectric effects exist in singlephase multiferroics [39], such as the combination of exchange cou pling and magnetostrictive effects [40], the fluctuation of the spinpair correlation from asymmetric charge hopping under external magnetic field [41] and interface boundary layer capacitance [42].…”
Section: Introductionmentioning
confidence: 99%
“…Существенный магнитодиэлектрический MD-эффект проявляется в керамических и композитных системах сложных твердых растворов ферритов и манганитов, ко-торые интенсивно исследуются в последнее время, [1][2][3][4][5]. Удельные сопротивления подобных систем, представля-ющих собой диэлектрическую матрицу с помещенными в нее магнитными частицами, в области концентраций компонент вдалеке от порога перколяции, обычно значи-тельно выше 10 2 · m [1][2][3][4].…”
Section: Introductionunclassified
“…Удельные сопротивления подобных систем, представля-ющих собой диэлектрическую матрицу с помещенными в нее магнитными частицами, в области концентраций компонент вдалеке от порога перколяции, обычно значи-тельно выше 10 2 · m [1][2][3][4]. Например, в типичном ком-позите, где в качестве диэлектрической матрицы исполь-зован Ba 0.95 Ca 0.05 Ti 0.90 Zr 0.10 O 3 , а магнитные включения (кристаллиты) -это манганит La 0.67 Sr 0.33 MnO 3 [3], получены следующие данные: уменьшение диэлектриче-ской проницаемости исследуемого композита на 31% в постоянном магнитном поле 0.6 T. В сложных, негомо-генных ферритах Ni 0.9−y Cu y Zn 0.1 Fe 1.98 O 3.97 (y = 0, 0.1, 0.2, 0.3, 0.4, 0.5) при y > 0.2 наблюдается положитель-ный MD-эффект порядка 7% в постоянном магнит-ном поле 0.35 T, обусловленный эффектом Максвелла-Вагнера и наличием собственной магниторезистивно-сти [4]. Согласно [5] внешнее магнитное поле влияет на фазовое разделение в манганите La 0.9 Sr 0.1 MnO 3 , что приводит к колоссальному MD-эффекту, обусловленно-му поляризацией Максвелла-Вагнера в диэлектрической антиферромагнитной матрице с проводящими ферромаг-нитными включениями.…”
Section: Introductionunclassified