pH and base saturation percentage (BSP) are two basic indexes in identifying soil types in Chinese Soil Taxonomy. Some studies proved that there is significant correlation between BSP and pH, thus it could save the cost of laboratory work if we can infer BSP directly from pH. In this study, the measured values of BSP and pH of 162 and 232 horizon samples from 48 and 55 red soil series surveyed from 2009 to 2011 in Fujian and Guangdong respectively were adopted from Soil Series Database to set up the optimal correlation model between BSP and pH. The results showed that: 1) BSP ranged from 2.30% to 94.02% with a mean of 25.07%, while pH from 3.42 to 6.91 with a mean of 4.98 for the total soil samples. 2) There were significant differences in pH between different soil types (R 2 were 0.624 for Ferralosols, 0.507 for Ferrosols, 0.515 for Argosols, and 0.456 for Cambosols, p < 0.01), in BSP between different parent materials (R 2 were 0.580 for Quaternary red clay, 0.434 for granite, 0.642 for sandstone, and 0.712 for basalt, p < 0.01), in pH and BSP between different land use types (R 2 were 0.623 for dryland, and 0.404 for forest land, p < 0.01). pH and BSP generally were in moderate variation (10%-100%), and in positive skew distribution (>0), their probability density curves were mainly in flat or normal curves (<0.67). 3) There is significant positive correlation between BSP and pH, and the optimal correlation models are in quadratic form in most circumstances, but the optimal model and the accuracy are different in different circumstances, changed with different regions, parent materials, soil types and land use types. The accuracy of models established in other studies when predicting our soil samples was lower compared with our models. pH < 5.33 or <5.93 could be used roughly to judge BSP < 35% or <50% based on the model of all red soil series (y = 6.84x 2 − 45.86x + 81.52, R 2 = 0.494, p < 0.01).