The dependence of thermal properties of Ag 8 In 14 Sb 55 Te 23 phase-change memory materials in crystalline and amorphous states on temperature was measured and analyzed. The results show that in the crystalline state, the thermal properties monotonically decrease with the temperature and present obvious crystalline semiconductor characteristics. The heat capacity, thermal diffusivity, and thermal conductivity decrease from 0.35 J/g K, 1.85 mm 2 /s, and 4.0 W/m K at 300 K to 0.025 J/g K, 1.475 mm 2 /s, and 0.25 W/m K at 600 K, respectively. In the amorphous state, while the dependence of thermal properties on temperature does not present significant changes, the materials retain the glass-like thermal characteristics. Within the temperature range from 320 K to 440 K, the heat capacity fluctuates between 0.27 J/g K and 0.075 J/g K, the thermal diffusivity basically maintains at 0.525 mm 2 /s, and the thermal conductivity decreases from 1.02 W/m K at 320 K to 0.