Nephrite is a high-valued gem material, whose geographical origin determination is a topic of interest to both consumers and producers since the geographic origin determines its price and reputation. In the present study, we suggest a two-step method for discriminating geographical origins of nephrite based on the rare earth element (REE) contents combined with chemometrics. In the first step, the REE contents of nephrite samples were determined by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), combined with previously reported data—the chondrite-normalized REE distribution pattern; the REE parameters of nephrite samples from six origins, namely Xinjiang, Qinghai, Russia, Guangxi, Guizhou, and Liaoning were then compared. In the second step, origin discriminant models were established by linear discriminant analysis (LDA), and the accuracy of the model was evaluated by leave-one-out cross-validation (LOOCV). The results showed that the REE contents were significantly different among the six nephrite origins with regional characteristics, which makes it possible to trace the origin. Using chondrite-normalized REE distribution patterns, the six nephrite origins can be divided into three separate groups: Xinjiang−Qinghai−Russia, Luodian−Dahua, and Xiuyan. Xiuyan nephrite can be directly distinguished from the other origins due to its unique REE distribution pattern. In the second step, the LDA discrimination models were performed on the remaining two groups. For the Luodian−Dahua group, the accuracy of the original classification and LOOCV were 97.9% and 85.4%, which indicated REE combined with LDA could effectively identify Luodian nephrite and Dahua nephrite. For the Xinjiang−Qinghai−Russia group, the accuracy of the original classification and LOOCV was 74.1% and 63.9%, respectively. Overall, this work proves that a combination of REE analysis and chemometrics has a certain feasibility and broad application prospects for geographical origin, and the same methodology can be applied to study the origin of other gem materials.