Accumulation of screening pigments manifests itself as directional changes in plant optical properties. Understanding the relationships between the magnitude and spectral quality of these changes and the extent of the underlying buildup of screening pigments could provide valuable insights into the status of screening-related photoprotection in plants. This chapter focuses on manifestations of the induction of screening pigments in reflectance and absorption spectra of microalgae and plants and lays a foundation for nondestructive quantification of screening compounds and their efficiency in plants.Plant cells and tissues comprising many components and structures of different morphology, chemical composition, and physical properties (such as refraction index) and containing high amounts of pigments are intricate, inhomogeneous optical systems (Butler and Norris 1960;Fukshansky 1981;Oborne and Raven 1986;Ustin et al. 2001;Vogelmann 1993). The efficiency of light absorption by both photoprotective pigments depends to a considerable extent, apart from their content, on a number of other factors exerting profound effects on the pigment spectra in planta (Butler and Norris 1960;Gonnet 1999Gonnet , 2003Smith and Markham 1998). For example, more than a half of the variation of light absorption by chlorophyll a in the cells of the green microalga Dunaliella tertiolecta in the course of its acclimation to irradiation intensity is explained by changes in the degree of thylakoid membrane stacking and less than a half is explained by changes in chlorophyll content per se (Berner et al. 1989).Numerous studies (see, e.g., Merzlyak et al. 2005aMerzlyak et al. , b, 2008a Merzlyak 2003, 2008) showed that the rearrangements of the plant pigment apparatus, including buildup of screening pigments during adaptation to illumination conditions, inevitably manifests itself in plant optical properties. Accordingly, the analysis of reflectance and absorption spectra of algae and plants provides valuable