Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Uncertainties in reservoir connectivity and compartmentalization risk are important considerations when thinking about any new field appraisal or development options. Having a better understanding of reservoir connectivity provides benefits in determining the appropriate drainage strategy and optimizing the field development plan. By the application of a new wireless reservoir monitoring technology, based on electromagnetic (EM) communications, it is now possible to monitor the reservoir pressure and temperature response during the long term suspension of development or appraisal wells. Accurate reservoir data can now be reliably collected in the period prior to a completion string being run, or a Xmas tree being installed on the well.Petrobras is conducting an active programme of drilling and well testing evaluation in the Pre-Salt Santos Basin area, with the objective of maximizing the collection of reservoir data that can be used to prove the reservoir models. An opportunity was identified to utilize this wireless monitoring technology in some newly drilled development wells that were to be suspended for an extended period of up to 3 years. The primary monitoring objective was to gather dynamic reservoir pressure data that could be used to identify interference effects resulting from production or injection events in the adjacent field area. Any evidence of interference will serve to prove reservoir connectivity with the adjacent well assets.A secondary monitoring objective was to record a long term pressure build-up, beyond the end of a Drill Stem Test (DST), to check for the presence of any reservoir boundaries located far from the wellbore.Case histories are presented for 2 installations of the wireless technology in the Brazilian deepwater pre-salt environment. The first case history presents the installation of a wireless gauge system that successfully transmitted high quality pressure and temperature data to a subsea receiver for a period of 873 days until the receiver's recovery from the seabed. The results show clear evidence of inter-well interference resulting from production in both near and far located wells. With certain producing wells being located at least 12km away from the observation well, this demonstrates that there was excellent reservoir connectivity across the field.The second case history was targeted at monitoring for interference effects resulting from an extended well test being performed on a well located 15km away. At the time of authoring this paper the survey has been on-going for 341 days and whilst there is no evidence of connectivity, the long term pressure build-up monitoring beyond the end of the DST has provided useful data.For both case histories the data collected has proved very useful in reducing uncertainty during the early stages of field development.
Uncertainties in reservoir connectivity and compartmentalization risk are important considerations when thinking about any new field appraisal or development options. Having a better understanding of reservoir connectivity provides benefits in determining the appropriate drainage strategy and optimizing the field development plan. By the application of a new wireless reservoir monitoring technology, based on electromagnetic (EM) communications, it is now possible to monitor the reservoir pressure and temperature response during the long term suspension of development or appraisal wells. Accurate reservoir data can now be reliably collected in the period prior to a completion string being run, or a Xmas tree being installed on the well.Petrobras is conducting an active programme of drilling and well testing evaluation in the Pre-Salt Santos Basin area, with the objective of maximizing the collection of reservoir data that can be used to prove the reservoir models. An opportunity was identified to utilize this wireless monitoring technology in some newly drilled development wells that were to be suspended for an extended period of up to 3 years. The primary monitoring objective was to gather dynamic reservoir pressure data that could be used to identify interference effects resulting from production or injection events in the adjacent field area. Any evidence of interference will serve to prove reservoir connectivity with the adjacent well assets.A secondary monitoring objective was to record a long term pressure build-up, beyond the end of a Drill Stem Test (DST), to check for the presence of any reservoir boundaries located far from the wellbore.Case histories are presented for 2 installations of the wireless technology in the Brazilian deepwater pre-salt environment. The first case history presents the installation of a wireless gauge system that successfully transmitted high quality pressure and temperature data to a subsea receiver for a period of 873 days until the receiver's recovery from the seabed. The results show clear evidence of inter-well interference resulting from production in both near and far located wells. With certain producing wells being located at least 12km away from the observation well, this demonstrates that there was excellent reservoir connectivity across the field.The second case history was targeted at monitoring for interference effects resulting from an extended well test being performed on a well located 15km away. At the time of authoring this paper the survey has been on-going for 341 days and whilst there is no evidence of connectivity, the long term pressure build-up monitoring beyond the end of the DST has provided useful data.For both case histories the data collected has proved very useful in reducing uncertainty during the early stages of field development.
Located in the Bjarmeland Platform area of the Barents Sea, Norvarg was discovered by Total in 2011 via wildcat well 7225/3-1, with gas being confirmed in both Jurassic and Triassic formations. A drill stem test (DST) was performed in the Triassic Upper Kobbe formation, but with non-commercial well productivity resulting. The post-DST vision for Norvarg was for stacked heterolithic tidal bar sands connected by large channel sands having better reservoir properties than tested in the first discovery well. The objectives of the follow-on Norvarg-2 appraisal well, drilled in 2013, included verifying the presence of the channel sands defined from seismic, quantifying the channel productivity and demonstrating the contribution of other Kobbe facies by performing an extended duration pressure buildup (PBU). It was a requirement that the selected PBU monitoring method would allow the well to be permanently abandoned in accordance with Norwegian legislation without any requirement for further well intervention. This was achieved by using an emergent new electromagnetic (EM) wireless reservoir monitoring technology, which allowed the pressure buildup to continue undisturbed beyond the end of the DST and final well abandonment. EM wireless monitoring technology is already well established as a means to monitor the reservoir pressure and temperature in abandoned appraisal wells, or suspended development wells, for the purpose of interference testing and reducing uncertainties in connectivity. However, this was the first time that it has been directly applied to monitor a long term PBU beyond final abandonment of a subsea appraisal well. By analysing the pressure transient data the objective was to investigate the presence of any flow barriers in the reservoir that might not be detectable during the course of a typical short duration pressure buildup performed during a DST. This paper presents a case study of the first time application in the Barents Sea of a post-abandonment wireless monitoring solution that successfully delivered high quality reservoir pressure and temperature data for a period of 9 months beyond the end of a DST. Analysis of the data provided clear evidence of internal flow barriers, located 130m and 280m from the wellbore, that were not observed during the normal DST period. This data proved the limited connected volumes and confirmed the requirement for additional development wells, compared with what was known prior to performing the test. This was important information to support the construction of the full field model and the further evaluation of the Norvarg prospect. Due to poor reservoir properties and disappointing deliverability, no viable development concept was identified for Norvarg, even with an increased well count and using fractured vertical and horizontal wells. The license for PL535 was subsequently relinquished in May 2014.
The high cost of subsea intervention makes in-well monitoring its greatest value. Even if interventions are possible it may not be at optimal well condition with the traditional technology. There also will be SIMOPS and operation issues. Real time in-well monitoring can be done at full well rates to operate well at maximum safe rates and thus lead to higher recovery. Acquiring key reservoir productivity and continuity data early can decrease risk for subsequent well decisions and help in development decisions. In-well monitoring will provide flow rates by sand layer, provide gas breakthrough and water breakthrough information and pinpoint exact location. All this information to engineers can help in decreasing production deferment from these producing wells. In case of injectors, warm back data helps in identifying zones where maximum water is getting injected and may identify out of zone injection. However significant challenges remain in selection, qualification and deployment of these technologies in deepwater subsea wells. The paper will provide an operator's view point covering some of the key challenges below:All components must be rigorously qualified to meet the stringent safety and operational requirements. The subsea tree interface between the tree and tubing hanger and between the lower upper completion creates a significant technical challenge. While there are potential solutions, dispersed capability in supplier base creates an integration challenge.The scope is further challenged by implementing across diverse reservoirs, flow and production characterization, completion type and enormous integration across various product groups.There is no point deploying state of the art advanced sensing if the resulting data is not easily accessible and interpreted. Especially in the subsea environment where costs are high, the entire value chain (hardware, data management and interpretation) needs to be in place to bring value.Resolution, accuracy and sampling time are interrelated and we are not able to achieve all with the current technology at the desired depth and offset distances. For certain operation such as planned well shut-in, buildups and press temperature analysis we need higher sampling rate which are easily and remotely configurableOperator needs to overcome internal hurdles – various functional teams (wells, subsea, IT) have to work together; this requires significant effort in terms of working the interfaces, integration and ultimately moving towards standardization. In-well monitoring can improve quality of surveillance in subsea wells enabling low cost, non intrusive, well and reservoir surveillance provided the industry overcomes the technical challenges/gaps and improves the reliability of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.