Plants are fundamentally important to life. Key research areas in plant science include plant species identification, weed classification using hyper spectral images, monitoring plant health and tracing leaf growth, and the semantic interpretation of leaf information. Botanists easily identify plant species by discriminating between the shape of the leaf, tip, base, leaf margin and leaf vein, as well as the texture of the leaf and the arrangement of leaflets of compound leaves. Because of the increasing demand for experts and calls for biodiversity, there is a need for intelligent systems that recognize and characterize leaves so as to scrutinize a particular species, the diseases that affect them, the pattern of leaf growth, and so on. We review several image processing methods in the feature extraction of leaves, given that feature extraction is a crucial technique in computer vision. As computers cannot comprehend images, they are required to be converted into features by individually analysing image shapes, colours, textures and moments. Images that look the same may deviate in terms of geometric and photometric variations. In our study, we also discuss certain machine learning classifiers for an analysis of different species of leaves. Table 2 Inferences of data sources Visual descriptors of leaf and classification No. of papers selected Geometrical descriptors 30 Leaf shape/tip/base/venation 40 Texture/texton 25