2019
DOI: 10.48550/arxiv.1904.10766
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Orthogonal polynomials and Möbius transformations

Abstract: Given an orthogonal polynomial sequence on the real line, another sequence of polynomials can be found by composing these polynomials with a general Möbius transformation. In this work, we study the properties of such Möbius-transformed polynomials. We show that they satisfy an orthogonality relation in given curve of the complex plane with respect to a varying weight function and that they also enjoy several properties common to the orthogonal polynomial sequences on the real line -e.g. a three-term recurrenc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 25 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?