Reading is a unique human cognitive skill and its acquisition was proven to extensively affect both brain organization and neuroanatomy. Differently from western sighted individuals, literacy rates via tactile reading systems, such as Braille, are declining, thus imposing an alarming threat to literacy among non-visual readers. This decline is due to many reasons including the length of training needed to master Braille, which must also include extensive tactile sensitivity exercises, the lack of proper Braille instruction and the high costs of Braille devices. The far-reaching consequences of low literacy rates, raise the need to develop alternative, cheap and easy-to-master non-visual reading systems. To this aim, we developed OVAL, a new auditory orthography based on a visual-to-auditory sensory-substitution algorithm. Here we present its efficacy for successful words-reading, and investigation of the extent to which redundant features defining characters (i.e., adding specific colors to letters conveyed into audition via different musical instruments) facilitate or impede auditory reading outcomes. Thus, we tested two groups of blindfolded sighted participants who were either exposed to a monochromatic or to a color version of OVAL. First, we showed that even before training, all participants were able to discriminate between 11 OVAL characters significantly more than chance level. Following 6 hours of specific OVAL training, participants were able to identify all the learned characters, differentiate them from untrained letters, and read short words/pseudo-words of up to 5 characters. The Color group outperformed the Monochromatic group in all tasks, suggesting that redundant characters’ features are beneficial for auditory reading. Overall, these results suggest that OVAL is a promising auditory-reading tool that can be used by blind individuals, by people with reading deficits as well as for the investigation of reading specific processing dissociated from the visual modality.