2016
DOI: 10.1134/s0005117916040020
|View full text |Cite
|
Sign up to set email alerts
|

Oscillation family in weakly coupled identical systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2016
2016
2022
2022

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 9 publications
(3 citation statements)
references
References 8 publications
0
2
0
1
Order By: Relevance
“…The following lemma states that the least matrix set measure is exactly the spectral abscissa. Lemma [24, 25] For any matrix set A$\mathbf {A}$, we have μ(A)badbreak=ϱ(A).$$\begin{equation*} \mu _*(\mathbf {A})=\varrho (\mathbf {A}). \end{equation*}$$…”
Section: Preliminariesmentioning
confidence: 99%
See 1 more Smart Citation
“…The following lemma states that the least matrix set measure is exactly the spectral abscissa. Lemma [24, 25] For any matrix set A$\mathbf {A}$, we have μ(A)badbreak=ϱ(A).$$\begin{equation*} \mu _*(\mathbf {A})=\varrho (\mathbf {A}). \end{equation*}$$…”
Section: Preliminariesmentioning
confidence: 99%
“…Therefore, spectral abscissa can be used to characterise the system while guaranteed stability is a special case corresponding to a negative spectral abscissa. The result that the spectral abscissa equals to the least possible common matrix set measure of the subsystems [24,25] leads to a possible computational way to calculate the spectral abscissa. That is, the spectral abscissa can be checked numerically.…”
Section: Introductionmentioning
confidence: 99%
“…Помимо ран-них классических работ, отраженных в монографиях [5][6][7][8][9][10] и более поздних работах [11][12][13], можно отметить, в частности, поиск периодических движений и циклов в сложных систе-мах, содержащих слабо связанные подсистемы [14][15][16], с доказательствами существования и устойчивости 2π-периодических решений для широкого класса задач, но без конструктив-ного построения таких решений. Отметим также работы, описывающие численно режимы, существующие в системах идентичных осцилляторов с различными типами связей [17,18].…”
Section: Introductionunclassified