The testing effect refers to the finding that retrieval practice of previously studied information enhances its longterm retention more than restudy practice does. Recent work showed that the testing effect can be dramatically reversed when feedback is provided to participants during final recall testing (Storm, Friedman, Murayama, & Bjork, 2014). Following this prior work, in this study, we examined the reversal of the testing effect by investigating oscillatory brain activity during final recall testing. Twenty-six healthy participants learned cue-target word pairs and underwent a practice phase in which half of the items were retrieval practiced and half were restudy practiced. Two days later, two cued recall tests were administered, and immediate feedback was provided to participants in Test 1. Behavioral results replicated the prior work by showing a testing effect in Test 1, but a reversed testing effect in Test 2. Extending the prior work, EEG results revealed a feedback-related effect in alpha/lower-beta and retrieval-related effects in slow and fast theta power, with practice condition modulating the fast theta power effect for items that were not recalled in Test 1. The results indicate that the reversed testing effect can arise without differential strengthening of restudied and retrieval-practiced items via feedback learning. Theoretical implications of the findings, in particular with respect to the distribution-based bifurcation model of testing effects (Kornell, Bjork, & Garcia, 2011), are discussed.