Antiperovskite CuNFe3 (CNF) thin films have been successfully prepared by chemical solution deposition (CSD) for the first time. They are versatile in many applications as an iron-based nitride. The preparation of pure CNF thin films is a challenging work for the complexity of the phase diagram. Herein, the CNF thin films are phase-pure and polycrystalline. Annealing temperature effects on the microstructures and physical properties were investigated, showing that the CNF thin films are metallic and can be considered as a candidate for room temperature soft-magnets with a large saturated magnetization (Ms) and a low coercive field (Hc). At high temperatures, the electrical transport behavior of CNF thin films presents a low temperature coefficient of resistivity (TCR) value, while the electron–electron interaction is prominent at low temperatures. The reported solution methods of CNF thin films will enable extensive fundamental investigation of the microstructures and properties as well as provide an effective route to prepare other antiperovskite transition-metal nitride thin films.