The endoplasmic reticulum (ER) is a large, continuous membrane-bound organelle comprised of functionally and structurally distinct domains including the nuclear envelope, peripheral tubular ER, peripheral cisternae, and numerous membrane contact sites at the plasma membrane, mitochondria, Golgi, endosomes, and peroxisomes. These domains are required for multiple cellular processes, including synthesis of proteins and lipids, calcium level regulation, and exchange of macromolecules with various organelles at ER-membrane contact sites. The ER maintains its unique overall structure regardless of dynamics or transfer at ER-organelle contacts. In this review, we describe the numerous factors that contribute to the structure of the ER.T he endoplasmic reticulum (ER) is a dynamic organelle responsible for many cellular functions, including the synthesis of proteins and lipids, and regulation of intracellular calcium levels. This review focuses on the distinct and complex morphology of the ER. The structure of the ER is complex because of the numerous distinct domains that exist within one continuous membrane bilayer. These domains are shaped by interactions with the cytoskeleton, by proteins that stabilize membrane shape, and by a homotypic fusion machinery that allows the ER membrane to maintain its continuity and identity. The ER also contains domains that contact the plasma membrane (PM) and other organelles including the Golgi, endosomes, mitochondria, lipid droplets, and peroxisomes. ER contact sites with other organelles and the PM are both abundant and dispersed throughout the cytoplasm, suggesting that they too could influence the overall architecture of the ER. As we will discuss here, ER shape and distribution are regulated by many intrinsic and extrinsic forces.
ER STRUCTURE AND FORMATION
Domains of the ER Are Stabilized by Membrane-Shaping ProteinsThe endoplasmic reticulum (ER) is a large membrane-bound compartment spread throughout the cytoplasm of eukaryotic cells. It is divided into three major morphologies that include the nuclear envelope (NE), peripheral ER cisternae, and an interconnected tubular network