In the present work, the unsaturated fatty acid substituents of some phosphatidic acid, phosphatidylserine, phosphatidylinositol, and phosphatidylglycerol species were converted to their 1,2-di-hydroxy derivatives by OsO 4 . The subsequent electrospray ionization tandem low-energy mass spectrometry analysis of the deprotonated species allowed positional determination of the double bonds by the production of specific product-ions. The productions are formed by charge-remote and charge-proximate homolytic cleavages as well as charge-directed heterolytic cleavages and rearrangements. The commercial availability of pure species of the phospholipids in question was limited, and a number of species were therefore synthesized. The developed method was used to fully characterize the two isobaric phosphatidylglycerol species 16:0/16:1⌬ 9 and 16:0/16:1⌬ 10 extracted from the bacteria Methylococcus capsulatus. The presence of these fatty acids was supported by a gas-chromatography mass spectrometry investigation of the dimethyloxazoline derivatives of the species of the lipid extract. The present work demonstrates that a total structure characterization of acidic unsaturated phospholipids in isolate or in mixtures is accomplished by vicinal di-hydroxylation of olefinic sites and subsequent electrospray ionization mass spectrometry of the derivatized phospholipids. (J Am Soc Mass Spectrom 2005, 16, 46 -59)