Elevated plasma and urinary endothelin-1 (ET-1) levels have been reported in patients with renal failure as well as in remnant kidney models of chronic renal failure. We investigated whether these changes are related to increased ET-1 production in cardiovascular and renal tissues of rats with reduced renal mass. In uremic rats, systolic blood pressure rose in parallel with the progression of renal insufficiency. At week 6, changes in systolic blood pressure were positively correlated with serum creatinine levels (r = 0.728, p < 0.01). Plasma immunoreactive ET-1 (ir-ET-1) concentration was similar in uremic rats and sham-operated controls. In contrast, urinary ir-ET-1 excretion was significantly greater in uremic rats and was correlated with the elevation of serum creatinine and proteinuria (r = 0.795, and 0.922, p < 0.01, respectively). Compared to the controls, ir-ET-1 concentration in the thoracic aorta, preglomerular arteries and glomeruli were 1.4-, 3.5- and 6.7-fold higher, respectively, in uremic rats (p < 0.01) than in the controls. However, ir-ET-1 concentration in the mesenteric arterial bed and the left ventricle remained similar in the 2 groups, whereas it was significantly lower in the renal papilla of uremic rats (p < 0.01). Thus, ET-1 production is unchanged or slightly increased in extrarenal cardiovascular tissues of rats with reduced renal mass. In contrast, ET-1 production is significantly augmented in preglomerular arteries and glomeruli, but reduced in the papilla, suggesting that increased urinary ir-ET-1 excretion in uremic rats reflects ET-1 overproduction in the former renal tissues. Elevated ET-1 production in blood vessels and glomeruli may thus play a key role in the aggravation of hypertension and the progression of renal insufficiency in this rat remnant kidney model of chronic renal failure.