This study focuses on the gross anatomy, anatomic relations, microanatomy, and meaning of three enigmatic, geographically-patterned, quasi-continuous superstructures of the posterior cranium. Collectively known as occipital superstructures (OSS), these traits are the occipital torus tubercle (TOT), retromastoid process (PR), and posterior supramastoid tubercle (TSP). When present, TOT, PR and TSP develop at posterior cranial attachment sites of the upper trapezius, superior oblique and sternocleidomastoid muscles, respectively. Marked expression and co-occurrence of these OSS are virtually circumscribed within Oceania and reach highest recorded frequencies in proto-historic Chamorros (CHamoru) of the Mariana Islands. Prior to undertaking scanning electron microscopy (SEM) work, our working multifactorial model for OSS development was that early-onset, long-term, chronic activity-related microtrauma at enthesis sites led to exuberant reactive or reparative responses in a substantial minority of genetically predisposed (and mostly male) individuals. SEM imaging, however, reveals topographic patterning that questions, but does not negate, activity-induction of these superstructures. While OSS appear macroscopically as relatively large and discrete phenomena, SEM findings reveal a unique, widespread and seemingly systemic distribution of structures over the occipital surface that have the appearance of OSS microforms. Nevertheless, apparent genetic underpinnings, anatomic relationships with muscle entheses, and positive correlation of OSS development with humeral robusticity continue to suggest that these superstructures have potential to at once bear witness to Chamorro population history and inform osteobiographical constructions of chronic activity patterns in individuals bearing them. Further work is outlined that would illuminate the proximate and ultimate meanings of OSS.