Mitogen-activated protein kinase (MAPK/MPK) cascades are pivotal and highly conserved signaling modules widely distributed in eukaryotes; they play essential roles in plant growth and development, as well as biotic and abiotic stress responses. With the development of sequencing technology, the complete genome assembly of rice without gaps, T2T (Telomere-to-Telomere)—NIP (version AGIS-1.0), has recently been released. In this study, we used bioinformatic approaches to identify and analyze the rice MPK kinases (MKKs) based on the complete genome. A total of seven OsMKKs were identified, and their physical and chemical properties, chromosome localization, gene structure, subcellular localization, phylogeny, family evolution, and cis-acting elements were evaluated. OsMKKs can be divided into four subgroups based on phylogenetic relationships, and the family members located in the same evolutionary branch have relatively similar gene structures and conserved domains. Quantitative real-time PCR (qRT-PCR) revealed that all OsMKKs were highly expressed in rice seedling leaves. The expression levels of all OsMKKs were more or less altered under exogenous hormone and abiotic stress treatments, with OsMKK1, OsMKK6, and OsMKK3 being induced under almost all treatments, while the expression of OsMKK4 and OsMKK10-2 was repressed under salt and drought treatments and IAA treatment, respectively. In this study, we also summarized the recent progress in rice MPK cascades, highlighted their diverse functions, and outlined the potential MPK signaling network, facilitating further studies on OsMKK genes and rice MPK cascades.