Abstract. Cutaneous melanoma is an aggressive cancer and its onset and growth are associated, through direct and indirect interactions, with the cancer microenvironment. The microenvironment comprises a dynamic complex of numerous types of cells (due to histogenesis) that constantly interact with each other through multiple cytokines and signaling proteins. Macrophages are one of the most thoroughly studied pleiotropic cells of the immune system. One of their major cytophysiological functions is their involvement in phagocytosis. Previous studies examining the microenvironment of melanomas and tumor-associated macrophages have revealed that they are involved in all stages of melanomagenesis. In the case of cancer initiation, they form an inflammatory microenvironment and then suppress the anticancer activity of the immune system, stimulate angiogenesis, enhance migration and invasion of the cancer cells, and ultimately contribute to the metastatic process. The present review provides a detailed overview on the function of macrophages in the melanoma microenvironment.
IntroductionMelanomas are a rare but aggressive cutaneous type of cancer in humans (1). At the dissemination stage in a majority of cases, the disease is resistant to treatment with cytostatics and radiotherapy (1). Therefore, the identification of novel molecular mechanisms involved in the melanomagenesis process and tumor progression have enabled the production of targeted therapies that yield notable effects (1). The basis for melanomagenesis is the accumulation of genetic disorders in the melanocyte (the most frequent ones include the following mutations: B-Raf proto-oncogene, serine/threonine kinase, N-Ras proto-oncogene, GTPase and phosphatase and tensin homolog) (1). However, only the interaction between microenvironment elements and genetic changes in the melanocyte result in the ultimate transformation of a dysplastic melanocyte into a melanoma cell, and at further stages result in the local invasion and dissemination of the primary lesion (1). It is the microenvironment that is one of the key elements of cancer formation and is being studied at present.A melanoma microenvironment is a markedly heterogenic population of cells that involves fibroblasts, macrophages, lymphocytes, other immune system cells, adipocytes and cells that form the structural elements of cutaneous blood vessels sunk in the extracellular matrix (2). The aforementioned complex network of cellular associations are constantly interacting through direct contact and active protein substances including secretory proteins (e.g., metalloproteinases or