As musculoskeletal diseases become an emerging healthcare problem worldwide, profound and comprehensive research has been focused on the biochemistry of bone metabolism in the past decades. Wnt signalling, one of the novel described pathways influencing bone metabolism from the early stages of tissue development, has been recently in the centre of attention. Several Wnt ligands are implied in bone forming pathways via canonical (β-catenin dependent) and non-canonical (β-catenin independent) signalling. Osteoporosis, a catabolic bone disease, has its pathologic background related, inter alia, to alterations in the Wnt signalling, thus key modulators of these pathways became one of the most promising targets in the treatment of osteoporosis. Antibodies inhibiting the activity of endogenous Wnt pathway inhibitors (sclerostin, dickkopf) are recently under clinical trials. The current article offers a brief review of the Wnt signalling pathways, its implication in bone metabolism and fate, and the therapeutic possibilities of osteoporosis through Wnt signalling.