Molluscan herpesviruses cause disease in species of major importance to aquaculture and are the only known herpesviruses to infect invertebrates, which lack an adaptive immune system. Understanding the evolution of malacoherpesviruses in relation to their hosts will likely require comparative genomic studies on multiple phylogenetic scales. Currently, only two malacoherpesvirus species have genomes that have been fully assembled, which limits the ability to perform comparative genomic studies on this family of viruses. In the present study, we fully assemble a herpesvirus from Illumina and Nanopore sequence data that were previously used to assemble the genome of the gastropod Babylonia areolata. We tentatively assign this novel herpesvirus to the genus Aurivirus within the family Malacoherpesviridae based on a phylogenetic analysis of DNA polymerase. While structurally similar to other malacoherpesvirus genomes, a synteny analysis of the novel herpesvirus with another Aurivirus species indicates that genomic rearrangements might be an important process in the evolution of this genus. We anticipate that future complete assemblies of malacoherpesviruses will be a valuable resource in comparative herpesvirus research.