To study the incentive mechanisms of cooperation, we propose a preference rewarding mechanism in the spatial prisoner’s dilemma game, which simultaneously considers reputational preference, other-regarding preference and the dynamic adjustment of vertex weight. The vertex weight of a player is adaptively adjusted according to the comparison result of his own reputation and the average reputation value of his immediate neighbors. Players are inclined to pay a personal cost to reward the cooperative neighbor with the greatest vertex weight. The vertex weight of a player is proportional to the preference rewards he can obtain from direct neighbors. We find that the preference rewarding mechanism significantly facilitates the evolution of cooperation, and the dynamic adjustment of vertex weight has powerful effect on the emergence of cooperative behavior. To validate multiple effects, strategy distribution and the average payoff and fitness of players are discussed in a microcosmic view.