2019
DOI: 10.17671/gazibtd.542662
|View full text |Cite
|
Sign up to set email alerts
|

Otonom Araçların Görsel Eğitimi için EEG, EMG ve IMU ile Etiketleme Sistemi

Abstract: Autonomous vehicles are tools that make decisions and take decisions by perceiving their environment. Today, autonomous vehicles are also used in traffic in some countries. Various types of cameras, laser radars (LIDAR), sonar distance sensors, etc. are used for environmental detection in autonomous vehicles. After the environment is perceived, the collected data is taught to the vehicle with the help of machine learning methods and the vehicle reaches the target by following the traffic rules. At the point of… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 33 publications
0
1
0
1
Order By: Relevance
“…The measurement of driver's biological data is of great help to improve the safety of autonomous vehicles and the ability of vehicles to avoid emergencies. A. Seckin et al [ 222 ] designed a driver data collection and marking system using EEG, EMG, and IMU in a comprehensive way and extracted features for training to improve the vehicle's ability to identify dangerous situations in autonomous driving. The data are classified by the KNN algorithm after PCA dimensionality reduction.…”
Section: Emg‐centered Multisensory Applicationsmentioning
confidence: 99%
“…The measurement of driver's biological data is of great help to improve the safety of autonomous vehicles and the ability of vehicles to avoid emergencies. A. Seckin et al [ 222 ] designed a driver data collection and marking system using EEG, EMG, and IMU in a comprehensive way and extracted features for training to improve the vehicle's ability to identify dangerous situations in autonomous driving. The data are classified by the KNN algorithm after PCA dimensionality reduction.…”
Section: Emg‐centered Multisensory Applicationsmentioning
confidence: 99%
“…Otonom sürüş çalışmalarında nesnelerin ve yol çizgilerinin algılanmasında genellikle kamera görüntüleri ve LIDAR dönüşleri kullanılmış, görüntü işleme tekniklerinden istifade edilmiştir [27,28]. Sürücü davranışlarına odaklanan çalışmaların bir kısmında biyomedikal sensörler ve görüntü işleme teknikleri de kullanılmıştır [29][30][31]. Görüntü işleme tekniklerinin yüksek işlem ve hafıza kapasiteli mikrodenetleyiciler veya bilgisayarlar gerektirmesi maliyeti artırmaktadır.…”
Section: İlgi̇li̇ çAlişmalar (Related Work)unclassified