Transcription factors (TFs) are often used repeatedly during development and homeostasis to control distinct processes in the same and/or different cellular contexts.Considering the limited number of TFs in the genome and the tremendous number of events that need to be regulated, re-use of TFs is an advantageous strategy. However, the mechanisms that control the activation of TFs in different cell types and at different stages of development remain unclear. The neural retina serves as a model of the development of a complex tissue. We used this system to analyze how expression of the homeobox TF, Orthodenticle homeobox 2 (Otx2), is regulated in a cell type-and stagespecific manner during retinogenesis. We identified seven Otx2 cis-regulatory modules (CRMs), among which the O5, O7 and O9 CRMs mark three distinct cellular contexts of Otx2 expression. These include mature bipolar interneurons, photoreceptors, and retinal progenitor/precursor cells. We discovered that Otx2, Crx and Sox2, which are well-known TFs regulating retinal development, bind to and activate the O5, O7 or O9 CRMs respectively. The chromatin status of these three CRMs was found to be distinct in vivo in different retinal cell types and at different stages, as revealed by ATAC-seq and DNaseseq analyses. We conclude that retinal cells utilize a cohort of TFs with different expression patterns, and multiple CRMs with different chromatin configurations, to precisely regulate the expression of Otx2 in a cell type-and stage-specific manner in the retina.