Electrogenicity of the Na(+)/K(+) pump has the capability to generate a large negative membrane potential independently of ion-channel current. The high background membrane resistance of arterioles may make them susceptible to such an effect. Pump current was detected by patch-clamp recording from smooth muscle cells in fragments of arterioles (diameter 24-58 microm) isolated from pial membrane of rabbit cerebral cortex. The current was 20 pA at -60 mV, and the extrapolated zero current potential was -160 mV. Two methods of estimating the effect of pump electrogenicity on resting potential indicated an average contribution of -35 mV. In 20% of the recordings, block of inward rectifier K(+) channels by 10-100 microM Ba(2+) led to a small depolarization, but hyperpolarization was a more common response. Ba(2+) also inhibited depolarization evoked by 20 mM K(+). In arterioles within intact pial membrane, Ba(2+) failed to evoke constriction but inhibited K(+)-induced constriction. The data suggest that cerebral arterioles are vulnerable to the hyperpolarizing effect of the Na(+)/K(+) pump, excessive effects of which are prevented by depolarizing inward rectifier K(+) current