Introduction: Ventilator-associated pneumonia (VAP) incidence is high among critically ill COVID-19 patients. Its attributable mortality remains underestimated, especially for unresolved episodes. Indeed, the impact of therapeutic failures and the determinants that potentially affect mortality are poorly evaluated. We assessed the prognosis of VAP in severe COVID-19 cases and the impact of relapse, superinfection, and treatment failure on 60-day mortality. Methods: We evaluated the incidence of VAP in a multicenter prospective cohort that included adult patients with severe COVID-19, who required mechanical ventilation for ≥48 h between March 2020 and June 2021. We investigated the risk factors for 30-day and 60-day mortality, and the factors associated with relapse, superinfection, and treatment failure. Results: Among 1424 patients admitted to eleven centers, 540 were invasively ventilated for 48 h or more, and 231 had VAP episodes, which were caused by Enterobacterales (49.8%), P. aeruginosa (24.8%), and S. aureus (22%). The VAP incidence rate was 45.6/1000 ventilator days, and the cumulative incidence at Day 30 was 60%. VAP increased the duration of mechanical ventilation without modifying the crude 60-day death rate (47.6% vs. 44.7% without VAP) and resulted in a 36% increase in death hazard. Late-onset pneumonia represented 179 episodes (78.2%) and was responsible for a 56% increase in death hazard. The cumulative incidence rates of relapse and superinfection were 45% and 39.5%, respectively, but did not impact death hazard. Superinfection was more frequently related to ECMO and first episode of VAP caused by non-fermenting bacteria. The risk factors for treatment failure were an absence of highly susceptible microorganisms and vasopressor need at VAP onset. Conclusions: The incidence of VAP, mainly late-onset episodes, is high in COVID-19 patients and associated with an increased risk of death, similar to that observed in other mechanically ventilated patients. The high rate of VAP due to difficult-to-treat microorganisms, pharmacokinetic alterations induced by renal replacement therapy, shock, and ECMO likely explains the high cumulative risk of relapse, superinfection, and treatment failure.