BackgroundAlthough the mononuclear cell (MNC) transplantation could theoretically induce therapeutic angiogenesis in the patients with no-option critical limb ischemia (NO-CLI), the clinical responses to this approach are inconsistent among different clinical trials. The purpose of this study was to identify the prognostic factors of responders and develop a predictive nomogram to guide patient selection.MethodsWe retrospectively reviewed a consecutive NO-CLI cohort who received peripheral blood-derived transplantation in our center. The patients who survived and achieved complete remission of CLI at 6 months post-transplantation were defined as responders. Logistic regression models were used to screen and identify the prognostic factors based on which predictive nomogram was developed. A receiver operating characteristic (ROC) curve and a calibration curve were drawn to determine the discrimination level and predictive accuracy.ResultsThe study ultimately enrolled 103 patients, including 58 responders and 45 non-responders. Based on the multivariate regression analysis, age ≥ 50 years (odds ratio [OR] 0.201, P = 0.004), blood fibrinogen > 4 g/L (OR 0.176, P = 0.003), arterial occlusion above the knee/elbow (OR 0.232, P = 0.010), the transcutaneous pressure of oxygen (TcPO2) (OR 1.062, P = 0.006), and the Log total transplanted CD34+ cell count (OR 3.506, P = 0.046) were identified as independent prognostic factors of the responders in the nomogram. An area under the ROC curve of 0.851 indicated good discrimination, and the calibration curve of the predicted probability showed optimal agreement with that of the observed probability.ConclusionsAge, blood fibrinogen, arterial occlusion level, TcPO2, and the total transplanted CD34+ cell count were independent prognostic factors of the responders. A nomogram with high discrimination and accuracy was developed to provide individualized predictions.Trail registrationChiCTR, ChiCTR1800019401. Registered 9 November 2018—Retrospectively registeredElectronic supplementary materialThe online version of this article (10.1186/s13287-018-1117-5) contains supplementary material, which is available to authorized users.