Objective
To evaluate the biomechanical characteristics of grafts from three different anterior cruciate ligament (ACL) reconstructive surgeries and to determine which method is better at restoring knee joint stability.
Methods
A 31-year-old female volunteer was enrolled in the study. According to the magnetic resonance imaging of her left knee, a three-dimensional model consisting of the distal femur, proximal tibia and fibula, ACL, posterior cruciate ligament, medial collateral ligament and lateral collateral ligament was established. Then, the ACL was removed from the original model to simulate the knee joint after ACL rupture. Based on the knee joint model without the ACL, single-bundle ACL reconstruction, double-bundle ACL reconstruction, and flat-tunnel ACL reconstruction were performed. The cross-sectional diameters of the grafts were equally set as 6 mm in the three groups. The bone tissues had a Young’s modulus of 17 GPa and a Poisson’s ratio of 0.36. The ligaments and grafts had a Young’s modulus of 390 MPa and a Poisson’s ratio of 0.4. Six probes were placed in an ACL or a graft to obtain the values of the equivalent stress, maximum principal stress, and maximum shear stress. After pulling the proximal tibia with a forward force of 134 N, the distance that the tibia moved and the stress distribution in the ACL or the graft, reflected by 30 mechanical values, were measured.
Results
The anterior tibial translation values were similar among the three groups, with the double-bundle ACL reconstruction group performing the best, followed closely by the patellar tendon ACL reconstruction group. In terms of stress distribution, 13 out of 30 mechanical values indicated that the grafts reconstructed by flat bone tunnels had better performance than the grafts in the other groups, while 12 out of 30 showed comparable outcomes, and 5 out of 30 had worse outcomes.
Conclusion
Compared with traditional single-bundle and double-bundle ACL reconstructions, flat-tunnel ACL reconstruction has advantages in terms of stress dispersion. Additionally, flat-tunnel ACL reconstruction falls between traditional double-bundle and single-bundle ACL reconstructions in terms of restoring knee joint stability and is superior to single-bundle ACL reconstruction.