Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
An increasing number of evidence suggests that bidirectional communication between the cardiovascular system and the central nervous system (CNS), known as the heart–brain interaction, is crucial in understanding the impact of coronary artery disease (CAD) on brain health. The multifactorial role of CAD in the brain involves processes such as inflammation, oxidative stress, neuronal activity, neuroendocrine imbalances, and reduced cerebral perfusion, leading to various cerebral abnormalities. The mechanisms underlying the relationship between CAD and brain injury are complex and involve parallel pathways in the CNS, endocrine system, and immune system. Although the exact mechanisms remain partially understood, neuroimaging techniques offer valuable insights into subtle cerebral abnormalities in CAD patients. Neuroimaging techniques, including assessment of neural function, brain metabolism, white matter microstructure, and brain volume, provide information on the evolving nature of CAD‐related cerebral abnormalities over time. This review provides an overview of the pathophysiological mechanisms of CAD in the heart–brain interaction and summarizes recent neuroimaging studies utilizing multiparametric techniques to investigate brain abnormalities associated with CAD. The application of advanced neuroimaging, particularly functional, diffusion, and perfusion advanced techniques, offers high resolution, multiparametric capabilities, and high contrast, thereby allowing for the early detection of changes in brain structure and function, facilitating further exploration of the intricate relationship between CAD and brain health.Level of Evidence5Technical EfficacyStage 3
An increasing number of evidence suggests that bidirectional communication between the cardiovascular system and the central nervous system (CNS), known as the heart–brain interaction, is crucial in understanding the impact of coronary artery disease (CAD) on brain health. The multifactorial role of CAD in the brain involves processes such as inflammation, oxidative stress, neuronal activity, neuroendocrine imbalances, and reduced cerebral perfusion, leading to various cerebral abnormalities. The mechanisms underlying the relationship between CAD and brain injury are complex and involve parallel pathways in the CNS, endocrine system, and immune system. Although the exact mechanisms remain partially understood, neuroimaging techniques offer valuable insights into subtle cerebral abnormalities in CAD patients. Neuroimaging techniques, including assessment of neural function, brain metabolism, white matter microstructure, and brain volume, provide information on the evolving nature of CAD‐related cerebral abnormalities over time. This review provides an overview of the pathophysiological mechanisms of CAD in the heart–brain interaction and summarizes recent neuroimaging studies utilizing multiparametric techniques to investigate brain abnormalities associated with CAD. The application of advanced neuroimaging, particularly functional, diffusion, and perfusion advanced techniques, offers high resolution, multiparametric capabilities, and high contrast, thereby allowing for the early detection of changes in brain structure and function, facilitating further exploration of the intricate relationship between CAD and brain health.Level of Evidence5Technical EfficacyStage 3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.