SummaryThe current pandemic of surgical complications necessitates urgent and pragmatic innovation to reduce postoperative morbidity and mortality, which are associated with poor pre‐operative fitness and anaemia. Exercise prehabilitation is a compelling strategy, but it has proven difficult to establish that it improves outcomes either in isolation or as part of a multimodal approach. Simulated altitude exposure improves performance in athletes and offers a novel potential means of improving cardiorespiratory and metabolic fitness and alleviating anaemia within the prehabilitation window. We aimed to provide an initial physiological foundation for ‘altitude prehabilitation’ by determining the physiological effects of one week of simulated altitude (FIO2 15%, equivalent to approximately 2438 m (8000 ft)) in older sedentary volunteers. The study used a randomised, double‐blind, sham‐controlled crossover design. Eight participants spent counterbalanced normoxic and hypoxic weeks in a residential hypoxia facility and underwent repeated cardiopulmonary exercise tests. Mean (SD) age of participants was 64 (7) y and they were unfit, with mean (SD) baseline anaerobic threshold 12 (2) ml.kg‐1.min‐1 and mean (SD) peak V̇O2 15 (3) ml.kg‐1.min‐1. Hypoxia was mild (mean (SD) SpO2 93 (2) %, p < 0.001) and well‐tolerated. Despite some indication of greater peak exercise capacity following hypoxia, overall there was no effect of simulated altitude on anaerobic threshold or peak V̇O2. However, hypoxia induced a substantial increase in mean (SD) haemoglobin of 1.5 (2.7) g.dl‐1 (13% increase, p = 0.028). This study has established the concept and feasibility of ‘altitude prehabilitation’ and demonstrated specific potential for improving haematological fitness. Physiologically, there is value in exploring a possible role for simulated altitude in pre‐operative optimisation.