Given a constant C and a smooth closed $$(n-1)$$
(
n
-
1
)
-dimensional Riemannian manifold $$(\Sigma , g)$$
(
Σ
,
g
)
equipped with a positive function H, a natural question to ask is whether this manifold can be realised as the boundary of a smooth n-dimensional Riemannian manifold with scalar curvature bounded below by C and boundary mean curvature H. That is, does there exist a fill-in of $$(\Sigma ,g,H)$$
(
Σ
,
g
,
H
)
with scalar curvature bounded below by C? We use variations of an argument due to Miao and the author (Int Math Res Not 7:2019, 2019) to explicitly construct fill-ins with different scalar curvature lower bounds, where we permit the fill-in to contain another boundary component provided it is a minimal surface. Our main focus is to illustrate the applications of such fill-ins to geometric inequalities in the context of general relativity. By filling in a manifold beyond a boundary, one is able to obtain lower bounds on the mass in terms of the boundary geometry through positive mass theorems and Penrose inequalities. We consider fill-ins with both positive and negative scalar curvature lower bounds, which from the perspective of general relativity corresponds to the sign of the cosmological constant, as well as a fill-in suitable for the inclusion of electric charge.