In this article, we suggest the following approaches to simultaneous variable selection and outlier detection. First, we determine possible candidates for outliers using properties of an intercept estimator in a difference-based regression model, and the information of outliers is reflected in the multiple regression model adding mean shift parameters. Second, we select the best model from the model including the outlier candidates as predictors using stochastic search variable selection. Finally, we evaluate our method using simulations and real data analysis to yield promising results. In addition, we need to develop our method to make robust estimates. We will also to the nonparametric regression model for simultaneous outlier detection and variable selection.