2022
DOI: 10.15408/jti.v15i1.25682
|View full text |Cite
|
Sign up to set email alerts
|

Outlier Detection in Inpatient Claims Using DBSCAN and K-Means

Abstract: Health insurance helps people to obtain quality and affordable health services. The claim billing process is manually input code to the system, this can lack of errors and be suspected of being fraudulent. Claims suspected of fraud are traced manually to find incorrect inputs. The increasing volume of claims causes a decrease in the accuracy of tracing claims suspected of fraud and consumes time and energy. As an effort to prevent and reduce the occurrence of fraud, this study aims to determine the pattern of … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?