PurposeDosimetry of small fields defined by stereotactic cones remains a challenging task. In this work, we report the results of commissioning measurements for the new Elekta stereotactic conical collimator system attached to the Elekta VersaHD linac and present the comparison between the measured and Monte Carlo (MC) calculated data for the 6 MV FFF beam. In addition, relative output factor (ROF) dependence on the stereotactic cone aperture variation was studied and penumbra comparison for small MLC‐based and cone‐based fields was performed.MethodsCones with nominal diameters of 15 mm, 12.5 mm, 10 mm, 7.5 mm, and 5 mm were employed in our study. Percentage depth dose (PDD), off‐axis ratios (OAR), and ROF were measured using a stereotactic field diode (SFD). BEAMnrc code was used for MC simulations.ResultsMC calculated and measured PDDs for all cones agreed within 1%/0.5 mm, and OAR profiles agreed within 1%/0.5 mm. ROF obtained from the measurements and MC calculations agreed within 2% for all cone sizes. Small‐field correction factors for the SFD detector Kfield,3 × 3(SFD) were derived using MC calculations as a baseline and were found to be 0.982, 0.992, 0.997, 1.015, and 1.017 for the 5, 7.5, 10, 12.5, and 15‐mm cones respectively. The difference in ROF was about 10%, 6%, 3.5%, 3%, 2.5%, and 2% for ±0.3 mm variations in 5, 7.5, 10, 12.5, and 15‐mm cone aperture respectively. In case of single static field, cone‐based collimation produced a sharper penumbra compared to the MLC‐based.ConclusionsAccurate MC simulation can be an effective tool for verification of dosimetric measurements of small fields. Due to the very high sensitivity of output factors on the cone diameter, manufacture‐related variations in cone size may lead to considerable variations in dosimetric characteristics of stereotactic cones.